Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Algebra of matrices exercise 4.3 question 60 math

Answers (1)

Answer: Hence proved,

A^{n}=\left[\begin{array}{ccc}1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right] for every integer n.

Hint: We use the principle of mathematical induction.

Given:

A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]                                     

Prove:

A^{n}=\left[\begin{array}{ccc}1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right] for every positive integer n.                 …(i)

Solution:

step 1: put n=1 in eqn(i)

A^{\mathbf{1}}=\left[\begin{array}{ccc}1 & 1 & \frac{1(1+1)}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]\\\\ A^{\mathbf{1}}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]

So, A^n is true for n=1

Step 2 : let  A^n be true for n=k, so

A^{k}=\left[\begin{array}{ccc}1 & k & \frac{k(k+1)}{2} \\ 0 & 1 & k \\ 0 & 0 & 1\end{array}\right]

Step 3:  we will prove  A^n that will be true for n=k+1

Now,\\A^{k+\mathbf{1}}=A^{k} A\) \(=\left[\begin{array}{ccc}1 & k & \frac{k(k+1)}{2} \\ 0 & 1 & k \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]\\\\\\ =\left[\begin{array}{ccc}1+0+0 & 1+k+0 & 1+k+\frac{k(k+1)}{2} \\ 0+0+0 & 0+1+0 & 0+1+k \\ 0+0+0 & 0+0+0 & 0+0+1\end{array}\right]\\\\\\ =\left[\begin{array}{ccc}1 & k+1 & \frac{(k+1)(k+2)}{2} \\ 0 & 1 & (k+1) \\ 0 & 0 & 1\end{array}\right]

Hence, A^n is true for n=k+1 wherever it is true for n=k

So, by principle of mathematical induction A^n  is true for all positive integers n.

Posted by

infoexpert22

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads