Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Algebra of matrices exercise 4.3 question 65 sub question (iv) math

Answers (1)

AnswerA=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right] and \ \ C=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], such that A B=A C \ \ but \ \ \ B \neq C, A \neq 0

Hint: Matrix multiplication is only possible, when the number of columns of first matrix is equal to the number of rows of second matrix.

Solution: LetA=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right] , \ \ C=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]

Here,

A \neq 0, B \neq C

Consider LHS

\\A B=\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{cc} 0 & 0 \\ -1 & 0 \end{array}\right] \\\\ =\left[\begin{array}{ll} 0+0 & 0+0 \\ 0+0 & 0+0 \end{array}\right]=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right]

Now consider RHS

\\A C=\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right] \ \left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right] \\\\ =\left[\begin{array}{ll} 0+0 & 0+0 \\ 0 +0 & 0+0 \end{array}\right] \\\\ =\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right]

LHS=RHS

So, A B=A C \ \ for \ \ \ B \neq C, A \neq 0

We have A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right] and \ \ C=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]

Posted by

infoexpert22

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads