Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 4 Algebra of Matrices exercise Fill in the blank question 21 maths textbook solution

Answers (1)

Answer:

 C = 0

Hint:

 Use commutative property of matrix A X B = B X A

Given:

 A=\left[\begin{array}{ll} a & d \\ c & d \end{array}\right] \text { and } B=\left[\begin{array}{ll} 1 & 1 \\ 0 & 1 \end{array}\right]

Solution:

A X B = B X A

\left[\begin{array}{ll} a & a+d \\ c & c+d \end{array}\right]=\left[\begin{array}{cc} a+c & b+d \\ c & d \end{array}\right]

 \begin{aligned} &a=a+c \\ &a-a=c \\ &\text { So, } c=0 \end{aligned}

C = 0

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads