Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Algebra of matrices exercise 4.3 question 48 sub question (i) maths textbook solution

Answers (1)

Answer:

A=\left[\begin{array}{lll}2 & 3 & 4 \\ 1 & 0 & 1\end{array}\right]

Hint: Matrix multiplication is only possible, when the number of columns of first matrix is equal to the number of rows of second matrix.

Given:

\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] A=\left[\begin{array}{lll}3 & 3 & 5 \\ 1 & 0 & 1\end{array}\right]

The matrix given on the RHS of the equation is a 2 \times 3 matrix and the matrix given on the LHS of the equation is 2 \times 2 . So, matrix A has to be 2 \times 3 matrix.

Since,

\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]_{2 \times 2}\ \ \ \ \ \left[\begin{array}{lll}3 & 3 & 5 \\ 1 & 0 & 1\end{array}\right]_{2 \times 3}

So,A is a matrix of order 2 \times 3

So, let

A=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]

\\\\ \Rightarrow\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]=\left[\begin{array}{lll}3 & 3 & 5 \\ 1 & 0 & 1\end{array}\right] \\\\ \Rightarrow\left[\begin{array}{lll}a+d & b+e & c+f \\ 0+d & 0+e & 0+f\end{array}\right]=\left[\begin{array}{lll}3 & 3 & 5 \\ 1 & 0 & 1\end{array}\right]

Since, corresponding entries of equal matrices are equal,

So,         

                   d=1, c=0, f=1

and

\\\\a+d=3 \Rightarrow a+1=3 \Rightarrow a=3-1 \Rightarrow a=2 \\\\ b+e=3 \Rightarrow b+0=3 \Rightarrow b=3

And

c+f=5 \Rightarrow c+1=5 \Rightarrow c=4

Hence,

\\\\A=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right] \\\\ A=\left[\begin{array}{lll}2 & 3 & 4 \\ 1 & 0 & 1\end{array}\right]

Posted by

infoexpert22

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads