Get Answers to all your Questions

header-bg qa

Explain Solution R.D. Sharma Class 12 Chapter 23 Scalar or Dot Products Exercise 23.1 Question 48 Maths Textbook Solution.

Answers (1)

Answer:  \frac{-11}{2}

Hint: You must know the rules of solving vectors.

Given: If \vec{a} and \vec{b} are two non-collinear unit vectors such that \mid \vec{a}+\vec{b}\mid =\sqrt{3}  .Find \left ( 2\vec{a}-5\vec{b} \right )\cdot \left ( 3\vec{a}+\vec{b} \right )

Solution: We have,

\mid \vec{a}+\vec{b}\mid =\sqrt{3}

Squaring both sides

\begin{aligned} &\Rightarrow|\vec{a}+\vec{b}|^{2}=3 \\ &\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}=3 \\ &\Rightarrow 1+1+2 \vec{a} \cdot \vec{b}=3 \end{aligned}                                                            [because\: \vec{a} \: and\: \vec{b} \: are\: unit \: vector ]

\begin{aligned} &\Rightarrow 2+2 \vec{a} \cdot \vec{b}=3 \\ &\Rightarrow 2 \vec{a} \cdot \vec{b}=3-2 \\ &\Rightarrow \vec{a} \cdot \vec{b}=\frac{1}{2} \end{aligned}

Now,

\left ( 2\vec{a}-5\vec{b} \right )\cdot \left ( 3\vec{a}+\vec{b} \right )

\begin{aligned} &\Rightarrow 6|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}-15 \vec{b} \cdot \vec{a}-5|\vec{b}|^{2} \\ &\Rightarrow 6|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}-15 \vec{b} \cdot \vec{a}-5|\vec{b}|^{2} \quad[\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}] \\ &\Rightarrow 6|\vec{a}|^{2}-13 \vec{a} \cdot \vec{b}-5|\vec{b}|^{2} \\ &\Rightarrow 6(1)-13\left(\frac{1}{2}\right)-5(1) \\ &\Rightarrow 1-\frac{13}{2} \\ &\Rightarrow \frac{-11}{2} \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads