Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D. Sharma Maths Class 12 Chapter 23 Scalar or Dot Products  Exercise 23.1 Question 17 Maths Textbook Solution.

Answers (1)

Answer: \overrightarrow{B}_{1}= \frac{1}{5}\left ( 3\hat{i}+4\hat{j}+5\hat{k} \right )

\overrightarrow{B}_{2}=\frac{1}{5}\left ( 13\hat{i}+9\hat{j}-15\hat{k} \right )

Hint: you must know the rule of solving vectors

Given: if \vec{a}=3\hat{i}+4\hat{j}+5\hat{k} \: \: \: \vec{B}=2\hat{i}+\hat{j}-4\hat{k}

Then express \vec{B} in the form of\vec{B}=\overrightarrow{B}_{1}+\overrightarrow{B}_{2}  where \overrightarrow{B}_{1} is parallel to \vec{a} and \overrightarrow{B_{2}} is perpendicular to \vec{a}

Solution: given that \begin{aligned} &\vec a=3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}, \ \ B=2 \hat{\imath}+\hat{\jmath}-4 \hat{k} \\ \end{aligned}

Also,

\begin{aligned} &\vec{B}=\overrightarrow{B_{1}}+\overrightarrow{B_{2}} \\ &\overrightarrow{B_{2}}=\vec{B}-\overrightarrow{B_{1}} \quad 1 \end{aligned}

Since \overrightarrow{B_{1}}parallel to\overrightarrow{a}

\begin{aligned} &\overrightarrow{B_{1}}=t \vec{a} \\ &\overrightarrow{B_{1}}=t(3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}) \\ &=3 t \hat{\imath}+4 t \hat{\jmath}+5 t \hat{k} \end{aligned}

Substituting the value of \overrightarrow{B_{1}} and  \vec{a}

\begin{aligned} &\overrightarrow{B_{2}}=2 \hat{\imath}+\hat{\jmath}-4 \hat{k}-(3 t \hat{\imath}+4 t \hat{\jmath}+5 t \hat{k}) \\\\ &=(2-3 t) \hat{\imath}+(1-4 t) \hat{\jmath}+(-4-5 t) \hat{k} \end{aligned}

Since \overrightarrow{B} is \perp to \vec{a}

\begin{aligned} &\overrightarrow{B_{2}} \cdot \vec{a}=0 \\ &\Rightarrow[(2-3 t) \hat{\imath}+(1-4 t) \hat{\jmath}+(-4-5 t) \hat{k}] \cdot[3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}]=0 \\ &\Rightarrow 3(2-3 t)+4(1-4 t)+5(-4-5 t)=0 \\ &\Rightarrow 6-9 t+4-16 t-20-25 t=0 \\ &\Rightarrow-50 t=10 \\ &t=\frac{-1}{5} \end{aligned}

\therefore we get

\begin{aligned} &\overrightarrow{B_{1}}=-\frac{1}{5}(3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}) \\ &\overrightarrow{B_{2}}=\frac{1}{5}(13 \hat{\imath}+9 \hat{j}-15 \hat{k}) \\ &=\frac{1}{5}(13 \hat{\imath}+9 \hat{\jmath}-15 \hat{k}) \end{aligned}

 

 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads