Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D. Sharma Maths Class 12 Chapter 23 Scalar or Dot Products  Exercise 23.1 Question 15 Maths Textbook Solution.

Answers (1)

Answer: \lambda =-2

Hint: you must know the rules of solving vectors

Given: \begin{aligned} &\vec{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k} \\ \end{aligned}                              Find \lambda

\begin{aligned} &\vec{b}=\hat{\imath}+\hat{\jmath}-2 \hat{k} \\ \end{aligned}                                        Such\: \: \vec{a} \: \: is \perp to \: \: \lambda \: \: \vec{b}+c

\begin{aligned} &\vec{c}=\hat{\imath}+3 \hat{\jmath}-\hat{k} \end{aligned}

Solution: The given vectors are  \begin{aligned} &\vec{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k} \\ \end{aligned}

\begin{aligned} &\vec{b}=\hat{\imath}+\hat{\jmath}-2 \hat{k} \\ \end{aligned}  and \begin{aligned} &\vec{c}=\hat{\imath}+3 \hat{\jmath}-\hat{k} \end{aligned}

Now,

\begin{aligned} &\lambda \vec{b}+\vec{c}=\lambda(\hat{\imath}+\hat{\jmath}-2 \hat{k})+\hat{\imath}+3 \hat{\jmath}-\hat{k} \\ &=(\lambda+1) \hat{\imath}+(\lambda+3) \hat{\jmath}-(2 \lambda+1) \hat{k} \end{aligned}

It is given that

\begin{aligned} &\vec{a} \perp(\lambda \vec{b}+\vec{c}) \\\\ &\Rightarrow \vec{a}.(\lambda \vec{b}+\vec{c})=0 \\ \end{aligned}

\begin{aligned} &\Rightarrow 2(\lambda+1)-(\lambda+3)-(2 \lambda+1)=0 \\\\ &2 \lambda+2-\lambda-3-2 \lambda-1=0 \\\\ &\lambda=-2 \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads