Get Answers to all your Questions

header-bg qa

Explain Solution R.D. Sharma Class 12 Chapter 23 Scalar or Dot Products Exercise 23.1 Question 50 Maths Textbook Solution.

Answers (1)

Answer:\frac{\pi }{3}

Hints: You must know the rules of solving vectors.

Given: Let \vec{a} and \vec{b} be unit vector. If the vectors \vec{c}=\vec{a}+2\vec{b},\vec{d}=5\vec{a}-4\vec{b} ,  are perpendicular to each other. Find the angle between vector \vec{a} and \vec{b}

Solution: a and b are unit vectors, ie, \mid a\mid =\mid b\mid =1

                                                          \vec{c}=\vec{a}+2\vec{b}\: \: and\: \: \vec{d}=5\vec{a}-4\vec{b}

c and d are perpendicular to each other,

c\cdot d=0

Angle between a and b

\begin{aligned} &c \cdot d=0 \\ &(a+2 b)(5 a-4 b)=0 \\ &5 a \cdot a-4 a \cdot b+10 b \cdot a-8 b \cdot b=0 \\ &6(a \cdot b)=3 \\ &a \cdot b=\frac{1}{2} \quad \therefore\left[\text { because } \cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}\right] \end{aligned}

So, angle between a and b is \frac{\pi }{3}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads