Get Answers to all your Questions

header-bg qa

Explain Solution RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.5 Question 9 Maths.

Answers (1)

Answer:A + A^{T} is a symmetric matrix.

Hint: FindA + A^{T}and prove that (A + A^{T}) = (A + A^{T})^{T}

Given: A = \begin{bmatrix} 2 &3 \\ 5& 7 \end{bmatrix}

Solution: A is a symmetric matrix if and only if A + A^{T} where A^{T} is the transpose of the matrix A

A^{T} = \begin{bmatrix} 2 & 5\\ 3 &7 \end{bmatrix}

A + A^{T} = \begin{bmatrix} 2 &3 \\ 5& 7 \end{bmatrix}+\begin{bmatrix} 2 & 5\\ 3& 7 \end{bmatrix}

= \begin{bmatrix} 4 &8 \\ 8& 14 \end{bmatrix}

(A + A^{T})^{T} =\begin{bmatrix} 4 &8 \\ 8& 14 \end{bmatrix} = A + A^{T}

Hence,

A + A^{T}is a symmetric matrix.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads