Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 23 Scalar or Dot  Products  Exercise 23.1 Question 18 Maths Textbook Solution.

Answers (1)

Answer: proved

Hint: you must know the rules of solving vectors

Given: if either \vec{a}=\vec{0} or \vec{b}=\vec{0} then \vec{a}.\vec{b}=0 

But the inverse need not be true, justify with example

Solution: let us assume that either.

\mid \vec{a}\mid =0 or \mid \vec{b}\mid =0

Then, \vec{a}.\vec{b}=\mid \vec{a}\mid \mid \vec{b}\mid\cos \theta =0

Now let us assume that \vec{a}.\vec{b}=0

\Rightarrow \mid \vec{a}\mid \mid \vec{b}\mid\cos \theta =0

But here we cannot say that either\mid \vec{a}\mid =0 or \mid \vec{b}\mid =0

For example, Let,

\begin{aligned} &\vec{a}=2 \hat{\imath}+\hat{\jmath}+3 \hat{k} \text { and } \vec{b}=-3 \hat{\imath}+2 \hat{k} \\\\ &\text { Here, }|\vec{a}|=\sqrt{4+1+9}=\sqrt{14} \quad \neq 0 \\\\ &|\vec{b}|=\sqrt{9+0+4}=\sqrt{13} \quad \neq 0 \\\\ &\text { But }(\vec{a} \cdot \vec{b})=(2 \hat{\imath}+\hat{\jmath}+3 \hat{k}) \cdot(-3 \hat{\imath}+2 \hat{k}) \\\\ &=-6+0+6 \\\\ &\Rightarrow 0 \end{aligned}

 

 


 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads