Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 23 Scalar or Dot  Products  Exercise 23.1 Question 26 Maths Textbook Solution.

Answers (1)

Answer:  2

Hint:  You must know the rules of solving vectors.

Given:  Find the projection of  \vec{b}+\vec{c} on \vec{a}, where \vec{a}=2\hat{i}-2\hat{j}+\hat{k},    \vec{b}=\hat{i}+2\hat{j}-2\hat{k}

                                                                                \vec{c}=2\hat{i}-\hat{j}+4\hat{k}

Solution: Given that,

\vec{a}=2\hat{i}-2\hat{j}+\hat{k}

                                                                                    \vec{b}=\hat{i}+2\hat{j}-2\hat{k} and

                                                                                    \vec{c}=2\hat{i}-\hat{j}+4\hat{k}

\begin{aligned} &\vec{b}+\vec{c}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k}+2 \hat{i}-\hat{\jmath}+4 \hat{k} \\ &\vec{b}+\vec{c}=3 \hat{\imath}+\hat{\jmath}+2 \hat{k} \end{aligned}

Projection of\vec{b}+\vec{c} on \vec{a} is

\begin{aligned} &\frac{(\vec{b}+\vec{c}) \cdot \vec{a}}{|\vec{a}|}=\frac{(3 \hat{\imath}+\hat{\jmath}+2 \hat{k}) \cdot(2 \hat{\imath}-2 \hat{\jmath}+\hat{k})}{\left|\sqrt{(2)^{2}+(-2)^{2}+(1)^{2}}\right|} \\ &\frac{(\vec{b}+\vec{c}) \cdot \vec{a}}{|\vec{a}|}=\frac{6-2+2}{|\sqrt{4+4+1}|} \\ &\frac{(\vec{b}+\vec{c}) \cdot \vec{a}}{|\vec{a}|}=\frac{6}{|\sqrt{9}|} \\ &\frac{(\vec{b}+\vec{c}) \cdot \vec{a}}{|\vec{a}|}=\frac{6}{3} \\ &\frac{(\vec{b}+\vec{c}) \cdot \vec{a}}{|\vec{a}|}=2 \end{aligned}

 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads