Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 23 Scalar or Dot  Products  Exercise 23.1 Question 28 Maths Textbook Solution.

Answers (1)

Answer:  \frac{\pi }{3},\frac{1}{\sqrt2}\hat{i},\frac{1}{2}\hat{j},\frac{1}{2}\hat{k}

Hint:  You must know the rules of solving vectors.

Given:   A unit vector \vec{a} makes angle \frac{\pi }{4} and \frac{\pi }{3}  with \hat{i} and \hat{j} respectively and an acute angle \theta and \hat{k}. Find the angle \theta and components of \vec{a}

Solution: Let

\vec{a}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1 \Rightarrow(1)                                                            [because\: \: \vec{a}\: \: is \: \: a \: \: unit\: \: vector ]

Now,

\begin{aligned} &\vec{a} \cdot \hat{\imath}=a_{1} \\ &\Rightarrow|\vec{a}||\hat{\imath}| \cos \frac{\pi}{4}=a_{1}\left[\text { because the angle between } \vec{a} \text { and } \hat{\imath} \text { is } \frac{\pi}{4}\right] \\ &\Rightarrow a_{1}=(1)(1)\left(\frac{1}{\sqrt{2}}\right) \\ &\Rightarrow a_{1}=\frac{1}{\sqrt{2}} \end{aligned}

Again,

\begin{aligned} &\Rightarrow|\vec{a}||\hat{\imath}| \cos \frac{\pi}{3}=a_{2} \\ &\Rightarrow(1)(1)\left(\frac{1}{2}\right)=a_{2} \\ &\Rightarrow \frac{1}{2}=a_{2} \end{aligned}

Now from (1)

\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{2}\right)^{2}+a_{2}^{2}=1\left[\right. because the angle between \vec{a} and \hat{\jmath} is \left.\frac{\pi}{3}\right]

\begin{aligned} &\frac{1}{2}+\frac{1}{4}+a_{3}^{2}=1 \\ &\frac{3}{4}+a_{3}^{2}=1 \\ &a_{3}^{2}=1-\frac{3}{4} \end{aligned}

a_{3}=\frac{1}{2}

NOw,

\begin{aligned} &\vec{a} \cdot \hat{k}=a_{3} \\ &\Rightarrow|\vec{a}||\hat{k}| \cos \theta=\frac{1}{2}[\text { because the angle between } \vec{a} \text { and } \hat{k} \text { is } \theta] \\ \end{aligned}

\begin{aligned} &\Rightarrow(1)(1) \cos \theta=\frac{1}{2} \\\\ &\theta=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3} \end{aligned}

And,

\vec{a}=\frac{1}{\sqrt{2}}\hat{i}+\frac{1}{2}\hat{j}+\frac{1}{2}\hat{k}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads