Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 23 Scalar or Dot  Products  Exercise 23.1 Question 36 Maths Textbook Solution.

Answers (1)

Answer:  \left ( -\frac{1}{2}\hat{i}-\hat{j}+\frac{1}{2} \hat{k}\right )+\frac{5}{2}\left ( \hat{i}+\hat{k} \right )

Hints: You must know the rules of solving vectors.

Given: Express 2\hat{i}-\hat{j}+3\hat{k} as the sum of a vector parallel and a vector perpendicular to 2\hat{i}+4\hat{k}-2\hat{k}.

Solution:

Let, \vec{a}=2\hat{i}-\hat{j}+3\hat{k}

\vec{b}=2\hat{i}+4\hat{j}-2\hat{k}

And \vec{x} and \vec{y} be such that,

                                                \Rightarrow \vec{a}=\vec{x}+\vec{y}

\Rightarrow \vec{y}=\vec{a}-\vec{x}

Since \vec{x} is parallel to \vec{b}

\begin{aligned} &\Rightarrow \vec{x}=t \vec{b} \\ &\Rightarrow \vec{x}=t(2 \hat{\imath}+4 \hat{\jmath}-2 \hat{k}) \\ &\Rightarrow \vec{x}=2 t \hat{\imath}+4 t \hat{\jmath}-2 t \hat{k} \end{aligned}

Substituting the values of \vec{x}and \vec{a}

\begin{aligned} &\Rightarrow(2 \hat{\imath}-\hat{\jmath}+3 \hat{k})-(2 t \hat{\imath}+4 t \hat{\jmath}-2 t \hat{k}) \\\\ &\Rightarrow(2-2 t) \hat{\imath}+(-1-4 t) \hat{\jmath}+(3+2 t) \hat{k} \\ \end{aligned}

Since y is perpendicular to \vec{b}

\begin{aligned} &\Rightarrow \vec{y} \cdot \vec{b}=0 \\ &\Rightarrow[(2-2 t) \hat{\imath}+(-1-4 t) \hat{\jmath}+(3+2 t) \hat{k}] \cdot(2 \hat{\imath}+4 \hat{\jmath}-2 \hat{k})=0 \\ &\Rightarrow 2(2-2 t)+4(-1-4 t)-2(3+2 t)=0 \\ &\Rightarrow 4-4 t-4-10 t-6-4 t=0 \\ &\Rightarrow-24 t=6 \end{aligned}

\begin{aligned} &\Rightarrow t=\left(\frac{-1}{4}\right) \\ &\therefore \vec{x}=2\left(\frac{-1}{4}\right) \hat{\imath}+4\left(\frac{-1}{4}\right) \hat{\jmath}-2\left(\frac{-1}{4}\right) \hat{k} \\ &\vec{x}=\frac{-1}{2} \hat{\imath}-\hat{\jmath}+\frac{1}{2} \hat{k} \\ &\vec{y}=\left[2-2\left(\frac{-1}{4}\right)\right] \hat{\imath}+\left[-1-4\left(\frac{-1}{4}\right)\right] \hat{\jmath}+\left[3+2\left(\frac{-1}{4}\right)\right] \hat{k} \\ &\vec{y}=\frac{5}{2} \hat{\imath}+\frac{5}{2} \hat{k}=\frac{5}{2}(\hat{\imath}+\hat{k}) \end{aligned}

So,

\vec{a}=\vec{x}+\vec{y}

\vec{a}=\left ( -\frac{1}{2}\hat{i}-\hat{j}+\frac{1}{2} \hat{k}\right )+\frac{5}{2}\left ( \hat{i}+\hat{k} \right )

 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads