Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter Algebra of Matrices Excercise 4.4 Question 1 Subquestion (i).

Answers (1)

Given:  

A=\begin{bmatrix} 2 &-3 \\ -7 &5 \end{bmatrix}, B=\begin{bmatrix} 1 &0 \\ 2 & -4 \end{bmatrix}

To prove:   \left ( 2A \right )^{T}=2A^{T}

Hint: The A^{T} of matrix A can be obtained by reflecting the elements along its main diagonal

Solution:
               \! \! \! \! \! \! \! \! A=\begin{bmatrix} 2 &-3 \\ -7 & 5 \end{bmatrix}, A^{T}=\begin{bmatrix} 2 &-7 \\ - 3& 5 \end{bmatrix}\\\\ 2A=2\begin{bmatrix} 2 &-3 \\ -7 & 5 \end{bmatrix}\\\\ 2A=\begin{bmatrix} 4 & -6\\ -14 & 10 \end{bmatrix}\\\\

               \left ( 2A \right )^{T}=\begin{bmatrix} 4 &-14 \\ -6& 10 \end{bmatrix}                                                                                                                      …… (1)

               2A ^{T}=2\begin{bmatrix} 2 & -7\\ -3 & 5 \end{bmatrix}=\begin{bmatrix} 4 &-14 \\ -6& 10 \end{bmatrix}                                                                                              …… (2)

From 1 & 2

              \left ( 2A \right ) ^{T}=2A^{T}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads