Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter Algebra of Matrices Excercise 4.4 Question 4

Answers (1)

Answer: \left ( AB \right )^{T}=B^{T}A^{T}

Given: A=-\begin{bmatrix} -2\\ 4\\ 5 \end{bmatrix}, B=\begin{bmatrix} 1 & 3 &- 6 \end{bmatrix}

To prove: \left ( AB \right )^{T}=B^{T}A^{T}

Hint: The  A^{T} of matrix A can be obtained by reflecting the elements along it’s main diagonal.

Solution:

                A^{T}=\begin{bmatrix} -2 & 4 &5 \end{bmatrix}, B^{T}=\begin{bmatrix} 1\\ 3\\ -6 \end{bmatrix}

               \left ( AB \right )^{T}=B^{T}A^{T}

               \left ( \begin{bmatrix} -2\\ 4\\ 5 \end{bmatrix}\begin{bmatrix} 1 &3 & -6 \end{bmatrix} \right )^{T}=\begin{bmatrix} 1\\ 3\\ -6 \end{bmatrix}\begin{bmatrix} -2 &4 & 5 \end{bmatrix}

               \begin{bmatrix} -2 & -6 &12 \\ 4& 12 & -24\\ 5 & 15 & -30 \end{bmatrix}=\begin{bmatrix} -2 & 4 &5 \\ -6 &12 & 15\\ 12 &-24 & -30 \end{bmatrix}

               \begin{bmatrix} -2 & 4 &5 \\ -6 &12 & 15\\ 12 &-24 & -30 \end{bmatrix}=\begin{bmatrix} -2 & 4 &5 \\ -6 &12 & 15\\ 12 &-24 & -30 \end{bmatrix}

∴LHS=RHS

Hence, \left ( AB \right )^{T}=B^{T}A^{T} is proved.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads