Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Algebra of matrices exercise 4.3 question 49

Answers (1)

Answer:

A=\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]

Hint: Matrix multiplication is only possible, when the number of columns of first matrix is equal to the number of rows of second matrix.

Given:

A\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=6 I_{2}

 is identity matrix of order 2

I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]

Now, let

A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]

\\\\ \Rightarrow\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=6\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\\\\\\ \Rightarrow\left[\begin{array}{ll}a+b & -2 a+4 b \\ c+d & -2 c+4 d\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]

Since, corresponding entries of equal matrices are equal, so

\\\\ \Rightarrow a+b=6 \quad \ldots(i) \\\\ \Rightarrow-2 a+4 b=0 \quad \ldots(i i)\\\\ \Rightarrow c+d=0 \quad \ldots(iii)\\\\ \Rightarrow-2 c+4 d=6 \quad \ldots(iv) \\

Multiply equation i by 4 and subtract equation ii from i

\\\\ 4 a+4 b=24\\\\ -2 a+4 b=0\\\\ 6 a=24\\\\ a=\frac{24}{6}\\\\ \Rightarrow a=4

 

Put a=4 in equation (i)

\\\\ \Rightarrow a+b=6\\\\ \Rightarrow 4+b=6\\\\ \Rightarrow b=6-4=2\\\\ \Rightarrow b=2

Multiply equation iii by 2 and add equation iii and iv

\\\\ 2 c+2 d=0\\\\ -2 c+4 d=6\\\\ 6 d=6\\\\ \Rightarrow d=1

Put d=1 in equation iii

\\\\ \Rightarrow c+d=0\\ \Rightarrow c=-1

Hence 

A=\left[\begin{array}{cc} 4 & 2 \\ -1 & 1 \end{array}\right]

Posted by

infoexpert22

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads