Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 4 Algebra of Matrices Exercise Very Short Asnwer Question 63 Maths Textbook Solution.

Answers (1)

Answer: \left ( x,y \right ) =\left ( -1,1 \right )

Hint: Here we use basic multiplication concept

Given:

\begin{bmatrix} x+y \\ x-y \end{bmatrix}= \begin{bmatrix} 2& 1\\ 4 &3 \end{bmatrix}\begin{bmatrix} 1\\-2 \end{bmatrix}    find \left ( x,y \right )

Solution:

Here in RHS In both matrix 1st has 2 coloumn and 2nd has row
So,multiplication is possible
\rightarrowSo, Let's do it

\begin{aligned} &\left[\begin{array}{l} x+y \\ x-y \end{array}\right]=\left[\begin{array}{l} 2-2 \\ 4-6 \end{array}\right]\\ &\left[\begin{array}{c} x+y \\ x-y \end{array}\right]_{2 \times 1}=\left[\begin{array}{c} 0 \\ -2 \end{array}\right]_{1 \times 2}\\ &x+y=0\\ &\frac{x-y=-2}{2 x=-2}\\ &\begin{array}{|l|l|} \hline x=-1 \\ \hline \end{array}\\ &x+y=0\\ &-1+y=0 \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads