Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.1 Question 14 Maths Textbook Solution.

Answers (1)

Answer:  x=-3,y=-5,z=2,a=-2,b=-7,c=-1

Given:   \begin{bmatrix} x+3 &z+4 & 2y-7\\ 4x+6 &a-1 &0 \\ b-3& 3b &z+2c \end{bmatrix}   = \begin{bmatrix} 0 &6 &3y-2 \\ 2x & -3 &2c+2 \\ 2b+4 & -21 & 0 \end{bmatrix}

Here we have to find out all the values of x,y,z,a,b,c

Hint: By definition of equal matrices is A=\left [ a_{ij} \right ]_{m\times n}  and  B=\left [ b_{ij} \right ]_{m\times n}  are equal then

          a_{ij}=b_{ij}   for i=1,2,3....m  and  j=1,2,3....n

Solution: Given that \begin{bmatrix} x+3 &z+4 & 2y-7\\ 4x+6 &a-1 &0 \\ b-3& 3b &z+2c \end{bmatrix}  = \begin{bmatrix} 0 &6 &3y-2 \\ 2x & -3 &2c+2 \\ 2b+4 & -21 & 0 \end{bmatrix}

Equating the entries, we get

x+3=0\\\Rightarrow x=-3       ;       z+4=6\\\Rightarrow z=2          ;        2y-7=3y-2\\\Rightarrow 2y-3y=-2+7\\\Rightarrow -y=+5\\\Rightarrow y=-5

Similarly,

a-1=-3            and      z+2c=0

\Rightarrow a=-3+1      and       2+2c=0

\Rightarrow a=-2            and       c=-1

Lastly,

 b-3=2b+4\\\Rightarrow b-2b=4+3\\\Rightarrow -b=7\\\Rightarrow b=-7

Hence, x=-3,y=-5,z=2,a=-2,b=-7,c=-1

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads