Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.1 Question 2 Suquestion (i) Maths Textbook Solution.

Answers (1)

Answer: a_{22}+b_{21}= 1
Given:
A= \left [ a_{ij} \right ]= \begin{bmatrix} 2 & 3 &-5 \\ 1& 4 & 9 \\ 0& 7 &-2 \end{bmatrix}       and    B= \left [ b_{ij} \right ]= \begin{bmatrix} 2 &-1 \\ -3& 4\\ 1& 2 \end{bmatrix}
Here we have to find out the values of a_{22}+b_{21}
Hint:
Simply we select the elements in the matrix which elements required and simplify
Solution: We know that
A= \left [ a_{ij} \right ]= \begin{bmatrix} a_{11} &a_{12} &a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31}& a_{32} & a_{33} \end{bmatrix}                     \cdot \cdot \cdot \left ( i \right )                                                                                
B= \left [ b_{ij} \right ]= \begin{bmatrix} b_{11} &b_{12} \\ a_{21} & a_{22} \\ a_{31}& a_{32} \end{bmatrix}                      \cdot \cdot \cdot \left ( ii \right )                                                                                               
Also given that
   A= \left [ a_{ij} \right ]= \begin{bmatrix} 2 & 3 &-5 \\ 1& 4 & 9 \\ 0& 7 &-2 \end{bmatrix}    and       B= \left [ b_{ij} \right ]= \begin{bmatrix} 2 &-1 \\ -3& 4\\ 1& 2 \end{bmatrix}
Now comparing with eqn (i) and (ii) we have,
a_{22}= 4b_{21}= -3
Hence a_{22}+b_{21}= 4+\left ( -3 \right )= 1
This is the required answer.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads