Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.1 Question 4 Subquestion (ii) Maths Textbook Solution.

Answers (1)

Answer: A= \begin{bmatrix} 1 &0 &-1 \\ 3& 2& 1 \end{bmatrix}
Given: Here given that matrix of order 2\times 3
            A= \left [ a_{ij} \right ]_{2\times 3}
             Here we have to construct 2\times 3 matrix as a_{ij}= 2i-j
Hint: We have to construct the matrix according to the question
Solution:   Let A= \left [ a_{ij} \right ]_{2\times 3}
So, the elements in a 2\times 3 matrix are a_{11},a_{12},a_{13},a_{21},a_{22},a_{23}
A= \begin{bmatrix} a_{11} & a_{12} &a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}
\! \! \! \! \! \! \! \! \! a_{11}= 2\times 1-1= 2-1= 1\\a_{12}= 2\times 1-2= 2-2= 0\\a_{13}= 2\times 1- 3= 2-3= -1            \! \! \! \! \! \! \! \! \! a_{21}= 2\times 2-1= 4-1= 3\\a_{22}= 2\times 2-2= 4-2= 2\\a_{23}= 2\times 2- 3= 4-3= 1
Substituting these values in Matrix A, we get
A= \begin{bmatrix} 1 &0 &-1 \\ 3& 2& 1 \end{bmatrix}
Hence this is the required answer.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads