Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.1 Question 4 Subquestion (iii) Maths Textbook Solution.

Answers (1)

Answer: A= \begin{bmatrix} 2 &3 &4 \\ 3& 4& 5 \end{bmatrix}
Given: Here given that matrix of order 2\times 3
            A= \left [ a_{ij} \right ]_{2\times 3}
            Here we have to construct the matrix according to a_{ij}= 2i+j
Hint: First we have to simply adding the row elements with column element as given
          question and then construct matrix.
Solution: Let A= \left [ a_{ij} \right ]_{2\times 3}
So, the elements in a 2\times 3 matrix are a_{11},a_{12},a_{13},a_{21},a_{22},a_{23}
A= \begin{bmatrix} a_{11} & a_{12} &a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}
\! \! \! \! \! \! \! \! \! a_{11}= 1+ 1= 2\\a_{12}= 1+2= 3\\a_{13}= 1+3= 4             \! \! \! \! \! \! \! \! \! a_{21}= 2+ 1= 3\\a_{22}= 2+ 2= 4\\a_{23}= 2+ 3= 5
Substituting these values in Matrix A, we get
A= \begin{bmatrix} 2 &3 &4 \\ 3& 4& 5 \end{bmatrix}
Hence this is the required answer.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads