Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.1 Question 4 Suquestion (i) Maths Textbook Solution.

Answers (1)

Answer: a_{ij}= i\times j,A= \begin{bmatrix} 1 &2 &3 \\ 2& 4& 6 \end{bmatrix}
Given: Here given that matrix of order 2\times 3
            A= \left [ a_{ij} \right ]_{2\times 3}
             Here we have to construct2\times 3  matrix as a_{ij}= i\times j
          
Hint:  We have to construct the matrix according to the question
Solution:  Given a_{ij}= i\times j
                   Let  A= \left [ a_{ij} \right ]_{2\times 3}
So, the elements in a 2\times 3 matrix are a_{11},a_{12},a_{13},a_{21},a_{22},a_{23} 
A= \begin{bmatrix} a_{11} & a_{12} &a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}
\! \! \! \! \! \! \! \! \! a_{11}= 1\times 1= 1\\a_{12}= 1\times 2= 2\\a_{13}= 1\times 3= 3                 \! \! \! \! \! \! \! \! \! a_{21}= 2\times 1= 2\\a_{22}= 2\times 2= 4\\a_{23}= 2\times 3= 6
Substituting these values in Matrix A, we get    
A= \begin{bmatrix} 1 &2 &3 \\ 2& 4& 6 \end{bmatrix}
Hence this is the required answer.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads