Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.1 Question 5 Suquestion (vi) Maths Textbook Solution.

Answers (1)

Answer: A= \begin{bmatrix} 1 &\frac{1}{2} \\ \\ \frac{5}{2} & 2 \end{bmatrix}

Given:  a_{ij}= \frac{\left |-3i+j \right |}{2}
            Here we have to construct 2\times 2  matrix according to  a_{ij}= \frac{\left |-3i+j \right |}{2}

Hint:    Substitute required values in the 2\times 2  matrix

Solution:  Let  A= \left [ a_{ij} \right ]_{2\times 2}

  So, the elements in a 2\times 2  are a_{11},a_{12},a_{21},a_{22} 

A= \begin{bmatrix} a_{11} &a_{12} \\ a_{21} & a_{22} \end{bmatrix}

\! \! \! \! \! \! \! \! \! a_{11}= \frac{\left | -3\times 1+1 \right |}{2}= \frac{2}{2}= 1\\ \\a_{12}= \frac{ \left |-3\times 1+ 2 \right |}{2}= \frac{ 1 }{2}                  \! \! \! \! \! \! \! \! \! a_{21}= \frac{ \left | -3\times 2+1 \right |}{2}=\frac{5 }{2}\\ \\a_{22}= \frac{\left | -3\times 2+2 \right | }{2}= \frac{ 4}{2}= 2

Substituting these values in Matrix A , we get

A= \begin{bmatrix} 1 &\frac{1}{2} \\ \\ \frac{5}{2} & 2 \end{bmatrix}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads