Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.1 Question 7 Subquestion (ii) Maths Textbook Solution.

Answers (1)

Answer:
A= \begin{bmatrix} 0 &-\frac{1}{3} &-\frac{1}{2} \\ \\ \frac{1}{3} &0 & -\frac{1}{5}\\ \\ \frac{1}{2} & \frac{1}{5} &0 \\ \\ \frac{3}{5} & \frac{1}{3} & \frac{1}{7} \end{bmatrix}

Given: Here  a_{ij}= \frac{i-j}{i+j}

Here we have to construct 4\times 3  matrix according to \frac{i-j}{i+j}

Hint: First we will find all the elements of matrix according to \frac{i-j}{i+j}

Solution: Here  a_{ij}= \frac{i-j}{i+j}

                 Let  A= \left [ a_{ij} \right ]_{4\times 3}

So, the elements in a 4\times 3  matrix are a_{11},a_{21},a_{31},a_{41},a_{12},a_{22},a_{32},a_{42},a_{13},a_{23},a_{33},a_{43}

A= \begin{bmatrix} a_{11} & a_{12} &a_{13} \\ a_{21} &a_{22} &a_{23} \\ a_{31} &a_{32} &a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}_{4\times 3}

\! \! \! \! \! \! \! \! \! a_{11}=\frac{1-1}{1+1}= \frac{0}{2}= 0 \\\\a_{12}=\frac{1-2}{1+2}=- \frac{1}{3} \\\\a_{13}= \frac{1-3}{1+3}= -\frac{2}{4}= \frac{1}{2}                           \! \! \! \! \! \! \! \! \! a_{21}=\frac{2-1}{2+1}= \frac{1}{3} \\\\a_{22}=\frac{2-2}{2+2}= \frac{0}{4}= 0 \\\\a_{23}= \frac{2-3}{2+3}= -\frac{1}{5}


\! \! \! \! \! \! \! \! \! a_{31}=\frac{3-1}{3+1}= \frac{2}{4} = \frac{1}{2}\\\\a_{32}=\frac{3-2}{3+2}= \frac{1}{5} \\\\a_{33}= \frac{3-3}{3+3}= \frac{0}{6}= 0                             \! \! \! \! \! \! \! \! \! a_{41}=\frac{4-1}{4+1}= \frac{3}{5} \\\\a_{42}=\frac{4-2}{4+2}= \frac{2}{6}= \frac{1}{3} \\\\a_{43}= \frac{4-3}{4+3}= \frac{1}{7}

Substituting these values in Matrix A , we get

A= \begin{bmatrix} 0 &-\frac{1}{3} &-\frac{1}{2} \\ \\ \frac{1}{3} &0 & -\frac{1}{5}\\ \\ \frac{1}{2} & \frac{1}{5} &0 \\ \\ \frac{3}{5} & \frac{1}{3} & \frac{1}{7} \end{bmatrix}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads