Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Algebra of Matrices Exercise 4.2 Question 18 Subquestion (i) Maths Textbook Solution.

Answers (1)

Answer: X = \begin{bmatrix} -1 & -2\\ -7 & -13 \end{bmatrix}

Hint: Add 2A + B matrix then transpose to RHS.

Given:A = \begin{bmatrix} -1 &2 \\ 3 & 4 \end{bmatrix} , B =\begin{bmatrix} 3 & -2\\ 1 & 5 \end{bmatrix}, 2A + B + x =0
Here, we have to compute X .
Solution:

2A + B + X =0

2\begin{bmatrix} -1 & 2\\ 3 & 4 \end{bmatrix} +\begin{bmatrix} 3 &-2 \\ 1 & 5 \end{bmatrix} + X = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}

\begin{bmatrix} -2 & 4\\ 6 & 8 \end{bmatrix} +\begin{bmatrix} 3 &-2 \\ 1 & 5 \end{bmatrix} + X = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}

\begin{bmatrix} -2+3 & 4-2\\ 6+1 & 8+5 \end{bmatrix} + X = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}

\begin{bmatrix} 1 & 2\\ 7 & 13 \end{bmatrix} + X = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}

X = \begin{bmatrix} -1 & -2\\ -7 & -13 \end{bmatrix}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads