Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Algebra of matrices exercise 4.3 question 65 sub question (ii) maths textbook solution

Answers (1)

Answer:

A=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{cc}0 & b \\ 0 & 0\end{array}\right], such that \\\\ A B=0 \ \ but \ \ A \neq 0, B . \neq 0

Hint: Matrix multiplication is only possible, when the number of columns of first matrix is equal to the number of rows of second matrix.

Solution:

Let

\\A=\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right] \neq 0\\\\ $$ B=\left[\begin{array}{ll} b & 0 \\ 0 & 0 \end{array}\right] \neq 0\\ $$ A B=\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}b & 0 \\ 0 & 0\end{array}\right]\\\\ =\left[\begin{array}{ll}0+0 & 0+0 \\ 0+0 & 0+0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]

Hence, AB=0

Therefore A=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{cc}0 & b \\ 0 & 0\end{array}\right], such that \\\\ A B=0 \ \ but \ \ A \neq 0, B . \neq 0

Posted by

infoexpert22

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads