Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D. Sharma Maths Class 12 Chapter 22 Algebra of Vectors  Exercise Very Short Answer Type  Question 19 Maths Textbook Solution.

Answers (1)

Answer: 6(\sqrt{2} \hat{i}+\hat{j}-\hat{k})

Hint: You must know the rules of vector functions

Given: Write a vector of magnitude 12 units which makes 45^{0} angles with x-axis, 60^{0}angle with y-axis, obtuse angle with z- axis.

Solution: Suppose a vector \vec{r}makes an angle 45^{0} with OX, 60^{0} with OY and having magnitude 12 units.

l=\cos 45^{\circ}=\frac{1}{\sqrt{2}} \text { and } m=\cos 60^{\circ}=\frac{1}{2}

Now,

\begin{aligned} &l^{2}+m^{2}+n^{2}=1 \\ &\frac{1}{2}+\frac{1}{4}+n^{2}=1 \\ &n^{2}=1-\frac{1}{2}-\frac{1}{4} \end{aligned}

\begin{aligned} &n^{2}=\frac{1}{4} \end{aligned}

\begin{aligned} &n^{2}=\pm \frac{1}{4} \end{aligned}

But angle obtuse angle along z-axis, so we use negative value.

∴  \begin{aligned} &n^{2}= \frac{-1}{4} \end{aligned}

Therefore,

\begin{aligned} &\vec{r}=|\vec{r}|(\hat{i}+m \hat{j}+n \hat{k}) \\ &=12\left(\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{2} \hat{j}-\frac{1}{2} \hat{k}\right) \\ &=6(\sqrt{2} \hat{i}+\hat{j}-\hat{k}) \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads