Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D. Sharma Maths Class 12 Chapter 23 Scalar or Dot Products  Exercise 23.1 Question 12 Maths Textbook Solution.

Answers (1)

Answer: proved

Hint: you must know the rules of solving vectors.

Given: show that the vector \hat{i}+\hat{j}+\hat{k} is equally inclined to coordinate

Solution: Let \theta, be the angle b/w \ \ \ \vec{a} and x-axis,

\begin{aligned} &|\vec{a}|=\sqrt{(1)^{2}+(1)^{2}+(1)^{2}}=\sqrt{1+1+1}=\sqrt{3} \\\\ &\vec{b}=\hat{i}(\text { Because } \hat{i} \text { is the unit vector along } \mathrm{x}-\mathrm{axis}) \\\\ &|\vec{b}|=\sqrt{(1)^{2}+0+0}=\sqrt{1} \quad \Rightarrow 1 \\\\ &\vec{a} \cdot \vec{b}=1+0+0=1 \end{aligned}

\begin{aligned} &|\vec{b}|=\sqrt{(1)^{2}+0+0}=\sqrt{1} \quad \Rightarrow 1 \\\\ &\vec{a} \cdot \vec{b}=1+0+0=1 \\\\ &\cos \theta_{1}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{1}{(\sqrt{3})(1)} \quad \Rightarrow \frac{1}{\sqrt{3}} \\\\ &\therefore \theta_{1}=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \end{aligned}1

\\\text{Let} \ \theta_{2} \text{ be the angle between } \vec{a} \: and \: \mathrm{y}-axis

\begin{aligned} &|\vec{a}|=\sqrt{(1)^{2}+(1)^{2}+(1)^{2}=\sqrt{3}} \\\\ &\vec{b}=\hat{J} \\\\ &|\vec{b}|=\sqrt{0+(1)^{2}+0} \quad=\sqrt{1} \Rightarrow 1 \\\\ &(\vec{a} \cdot \vec{b})=0+1+0=1 \\\\ &\Rightarrow 1 \end{aligned}

we Know \vec{a} \cdot \vec{b}=\cos \theta|\vec{a}||\vec{b}|

\begin{aligned} &1=\sqrt{3} \cos \theta_{2} \\ &\frac{1}{\sqrt{3}}=\cos \theta_{2} \\ &\therefore \theta_{2}=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \end{aligned}

Again ,  Let \theta _{3} be the angle between \vec{a} and z-axis

\begin{aligned} &|\vec{a}|=\sqrt{(1)^{2}+(1)^{2}+(1)^{2}=\sqrt{3}} \\\\ &\vec{b}=\hat{k} \quad \text { (Because } \hat{k} \text { is unit vector along } z-\text { axis }) \\\\ &|\vec{b}|=\sqrt{0+0+(1)^{2} \quad=\sqrt{1}}=1 \\\\ &\vec{a} \cdot \vec{b}=(\hat{\imath}-\hat{\jmath}+\hat{k}) \cdot(\hat{k}) \\\\ &\Rightarrow(0+0+1) \quad \Rightarrow 1 \end{aligned}

We Know \vec{a} \cdot \vec{b}=\cos \theta|\vec{a}||\vec{b}|

1=\sqrt{3} \cos \theta

\frac{1}{\sqrt{3}}=\cos \theta

\therefore \theta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)

From 1, 2, 3 the given vector is equally inclined to the co-ordinate ones.

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads