Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 23 Scalar or Dot Products  Exercise 23.1 Question 5 Sub Question 2 Maths Textbook Solution.

Answers (1)

Answer: \cos ^{-1}\left ( \frac{-34}{63} \right )

Hint: you must know the properly of findings angle b/w two vectors

Given: \vec{a}=3\hat{i}-2\hat{j}+6\hat{k} and \vec{b}=4\hat{i}-\hat{j}+8\hat{k}

Solution: \vec{a}=3\hat{i}-2\hat{j}+6\hat{k} and \vec{b}=4\hat{i}-\hat{j}+8\hat{k}

We know \vec{a}.\vec{b}=\mid \vec{a}\mid \mid \vec{b}\mid \cos \theta

Now, \left ( \vec{a}.\vec{b} \right )=\left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )\left ( 4\hat{i}-\hat{j}+8\hat{k} \right )

=12+2-48               \Rightarrow 14-48=-34

Magnitude of \mid \vec{a}\mid =\sqrt{\left ( 3 \right )^{2}+\left ( -2 \right )^{2}+\left ( -6 \right )^{2}}

=\sqrt{9+4+36}                       =\sqrt{49}

\Rightarrow 7

Magnitude of \mid \vec{b}\mid =\sqrt{\left ( 4 \right )^{2}-\left ( -1 \right )^{2}+\left ( -8 \right )^{2}}

=\sqrt{16+1+64}

=\sqrt{81}

\Rightarrow 9

Put values in 1

\begin{aligned} &\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \\\\ &-34=(7)(9) \cos \theta \\\\ &-34=(63) \cos \theta \\\\ \end{aligned}

\begin{aligned} &\frac{-34}{63}=\cos \theta \\\\ &\theta=\cos ^{-1}\left(\frac{-34}{63}\right) \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads