Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 23 Scalar or Dot Products  Exercise 23.1 Question 5 Sub Question 4 Maths Textbook Solution.

Answers (1)

Answer:  \cos ^{-1}\left ( \frac{-3}{\sqrt{84}} \right )

 

Hint: You must know the rules of finding angle between two vectors.

Given: \vec{a}=2\hat{i}-3\hat{j}+\vec{k} and \vec{b}=\hat{i}+\hat{j}-2\vec{k}

Solution:

\vec{a}=2\hat{i}-3\hat{j}+\vec{k}

\vec{b}=\hat{i}+\hat{j}-2\vec{k}

we Know \vec{a}.\vec{b}=\mid \vec{a}\mid \mid \vec{b}\mid \cos \theta      ....(i)

Now,\left ( \vec{a}.\vec{b} \right )=\left ( 2\hat{i}-3\hat{j}+\vec{k} \right )\left ( \hat{i}+\hat{j}-2\vec{k} \right )\left|\begin{array}{l} \hat{\imath} \cdot \hat{\imath}=1 \\ \hat{\imath} \cdot \hat{\jmath}=0 \end{array}\right|

\left ( 2-3-2 \right )\Rightarrow -3

Magnitude of \mid \vec{a}\mid =\sqrt{\left ( 2 \right )^{2}+\left ( -3 \right )^{2}+\left ( -2 \right )^{2}}

=\sqrt{4+9+4}                                =\sqrt{8+9}=\sqrt{17}

Magnitude of\mid \vec{b}\mid =\sqrt{\left ( 1 \right )^{2}+\left ( 1 \right )^{2}+\left ( -2 \right )^{2}}

=\sqrt{1+1+4}                            =\sqrt{6}

Put in (1)

\vec{a}.\vec{b}=\mid \vec{a}\mid \mid \vec{b}\mid \cos \theta

-3=\left ( \sqrt{17} \right )\left ( \sqrt{6} \right )\cos \theta

-3=\sqrt{84}\cos \theta

\cos \theta =\frac{-3}{\sqrt{84}}

\theta =\cos ^{-1}\left ( \frac{-3}{\sqrt{84}} \right )

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads