Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 10 Differential Equation Exercise 21.10 question 16

Answers (1)

Answer:  y=\tan ^{-1} x-1+C e^{-\tan ^{-1} x}

Hint: To solve this equation we use e\int f dx  formula.

Give:  \begin{aligned} &\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x\\ & \end{aligned}

Solution:  \left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x\\

=\frac{d y}{d x}+\frac{y}{\left(1+x^{2}\right)}=\frac{\tan ^{-1} x}{1+x^{2}} \ldots(i)

\begin{aligned} &P=\frac{1}{1+x^{2}}, \cos x=\frac{\tan ^{-1} x}{1+x^{2}} \\ & \end{aligned}

I f=e^{\int P d x} \\

=e^{\int \frac{1}{1+x^{2}} d x} \\

=e^{\tan ^{-1} x} \\

=I f=e^{\tan ^{-1} x} \\

=4 e^{\tan ^{-1} x}=\int e^{\tan ^{-1} x} \frac{\tan ^{-1} x}{1+x^{2}} d x+C

Put  \tan ^{-1} x=t

\begin{aligned} &=\frac{1}{1+x^{2}} d x=d t \\ & \end{aligned}

=y e^{\tan ^{-1} x}=\int e^{t} t d t \\

=y e^{\tan ^{-1} x}=t \int e^{t} d t-\int \frac{d}{d t}(t) \int e^{t} d t d x+C \\

=t e^{t}-\int e^{t} d t+C

\begin{aligned} &=y e^{\tan ^{-1} x}=t e^{t}-e^{t}+C \\ & \end{aligned}

=y e^{\tan ^{-1} x}=e^{t}(t-1)+C \\

=y e^{\tan ^{-1} x}=e^{t}(t-1)+C \\

=y e^{\tan ^{-1} x}=e^{\tan ^{-1} x}\left(\tan ^{-1} x-1\right)+C \\

=y=\tan ^{-1} x-1+\frac{C}{\tan ^{-1} x} \\

=y=\tan ^{-1} x-1+C e^{-\tan ^{-1} x}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads