# Get Answers to all your Questions

#### Explain solution for  RD Sharma Class 12 Chapter 21 Differential Equation Exercise Multiple Choice Question Question 25 maths textbook solution.

Answer :  $\text { (a) } \phi\left(\frac{y}{x}\right)=k x$

Hint : Let $y=vx$

Given : $\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)}$                         ...(i)

Explanation : $\text { Let } y=v x$

$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

Put in (i)

\begin{aligned} &\Rightarrow v+x \frac{d v}{d x}=v+\frac{\phi(v)}{\phi^{\prime}(v)} \\ &\Rightarrow x \frac{d v}{d x}=\frac{\phi(v)}{\phi^{\prime}(v)} \end{aligned}

\begin{aligned} &\Rightarrow \frac{\phi^{\prime}(v)}{\phi(v)} d v=\frac{d x}{x} \\ &\text { Let } \phi(v)=t \\ &\Rightarrow \phi^{\prime}(v) d v=d t \end{aligned}

$\Rightarrow \frac{d t}{t}=\frac{d x}{x}$

Integrate both sides

\begin{aligned} &\Rightarrow \log t=\log x+\log k \\ &\Rightarrow \log t=\log k x \\ &\Rightarrow t=k x \end{aligned}

\begin{aligned} &\Rightarrow \phi(v)=k x \\ &\Rightarrow \phi\left(\frac{y}{x}\right)=k x \end{aligned}