Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 21 Differential Equation exercise Fill in the blank question 37 maths textbook solution

Answers (1)

Answer:

 \frac{1}{x}

Given:

The integrating factor of differential equation

x\frac{\mathrm{d} y}{\mathrm{d} x}-y=log\, x

is ______

Hint:

 By the help of integrating factor the sum will solve.

Solution:

x\frac{\mathrm{d} y}{\mathrm{d} x}-y=log\, x

\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}-\frac{y}{x}=\frac{log\, x}{x}

Comparing the above equation with the standard linear differential equation, we get

\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}+Py=Q

Here,

P=\frac{-1}{x}\: and\: Q=\frac{log\, x}{x}

So, integrating factor

e^{\int P\, dx}=e^{\int-\frac{1}{x} dx}=e^{-log\, x}=\frac{1}{x}

So, the answer is

\frac{1}{x}

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads