Get Answers to all your Questions

header-bg qa

Provide solution for RD sharma maths class 12 chapter 21 Differential Equation exercise 21.1 question 15

Answers (1)

Order=2, Degree=2, Non- linear

Hint:

The order is the highest numbered derivative in the equation with no negative or fractional power of the dependent variable and its derivatives, while the degree is the highest power to which a derivative is raised.

Given:

2\frac{d^{2}y}{dx^{2}}+3\sqrt{1-\left ( \frac{dy}{dx} \right )^{2}-y}=0

Solution:

The above equation can be written as

2\frac{d^{2}y}{dx^{2}}=-3\sqrt{1-\left ( \frac{dy}{dx} \right )^{2}-y}

 

 

 

Since the equation has rational powers, we need to remove them.

So squaring both sides, we get

4\left (\frac{d^{2}y}{dx^{2}} \right )^{2}=9({1-\left ( \frac{dy}{dx} \right )^{2}-y)}

Here in this question, the order of the differential equation is 2 and the degree of the differential equation is 2.

In a differential equation, when the dependent variable and their derivatives are only multiplied by constant or independent variable, then the equation is linear.

Here the dependent variable is y and the term \frac{dy}{dx} is multiplied by itself. So this equation is non-linear differential equation.

Therefore, Order=2, Degree=2, Non-linear

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads