Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 21 Differential Equation exercise 21.10 question 37 subquestion (vii)

Answers (1)

Answer:  \begin{aligned} & y=\sin x\\ & \end{aligned}

Give: x \frac{d y}{d x}+y=x \cos x+\sin x, y\left(\frac{\pi}{2}\right)=1\\

Hint: Using integration by parts  \int \frac{1}{1+x^{2}} d x\\

Explanation:  x \frac{d y}{d x}+y=x \cos x+\sin x

Divide by x

 \begin{aligned} &=\frac{d x}{d y}+\frac{y}{x}=\cos x+\frac{\sin x}{x} \\ &=\frac{d x}{d y}+\left(\frac{1}{x}\right) y=\cos x+\frac{\sin x}{x} \end{aligned}

This is a linear differential equation of the form

 \begin{aligned} &\frac{d x}{d y}+P y=Q \\ &P=\frac{1}{x} \text { and } Q=\cos x+\frac{\sin x}{x} \end{aligned}

The integrating factor If  of this differential equation is

 \begin{aligned} &I f=e^{\int P d x} & \\ & \end{aligned}

=e^{\int \frac{1}{x}} d x \\

=e^{\log |x|}                       {\left[\int \frac{1}{x} d x=\log |x|+C\right]} \\

=x                         {\left[e^{\log e^{x}}=x\right]}

Hence, the solution is

 \begin{aligned} &y I f=\int Q I f d x+C \\ &=y(x)=\int\left(\cos x+\frac{\sin x}{x}\right) x d x+C \end{aligned}

\begin{aligned} &=y x=\int(x \cos x+\sin x) d x+C \\ &=y x=\int x \cos x d x+\int \sin x d x+C \ldots(i) \end{aligned}

Using integration by parts

\begin{aligned} &\int x \cos x d x \\ &=x \sin x-\int \sin x d x \end{aligned} 


Substituting in (i)

 \begin{aligned} &=y x=x \sin x-\int \sin x d x+\int \sin x d x+C \\ &=y x=x \sin x+C \end{aligned}


Divide by x

 =y=\sin x+\frac{C}{x} \ldots(i i)

Now   \begin{aligned} &y\left(\frac{\pi}{2}\right)=1 \text { when } x=\frac{\pi}{2}, y=1 \\ & \end{aligned}

 \quad=1=\sin \frac{\pi}{2}+\frac{C}{\frac{\pi}{2}} \\

\quad=1=1+\frac{2 C}{\pi} \quad\left[\sin \frac{\pi}{2}=1\right]

\begin{aligned} &=\frac{2 C}{\pi}=0\\ & \end{aligned}


Substituting in (ii)

=y=\sin x+(0) \frac{1}{x}\\

=y=\sin x+0\\

=y=\sin x

Posted by


View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support