Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 21 Differential Equations Exercise Revision Exercise Question 34  Maths Textbook Solution.

Answers (1)

Answer:\left ( x+c \right )e^{x+y}+1=0\

Hint: you must know the rules of solving differential equation and integrations.

Given:\frac{dy}{dx}+1=e^{x+y}

Solution:\frac{dy}{dx}+1=e^{x+y}..........(I)

Put x + y = t and differentiate both sides. We get,

1+\frac{dy}{dx}=\frac{dt}{dx}

Compare with equation (I),

\frac{dt}{dx}=e^{t}

e^{-t}dt=dx

Now, integrating both sides,

\begin{aligned} &\int \mathrm{e}^{-\mathrm{t}} \mathrm{d} \mathrm{t}=\int \mathrm{dx} \quad\left[\because \int \mathrm{e}^{-\mathrm{t}} \mathrm{dt}=\frac{\mathrm{e}^{-\mathrm{t}}}{-1}\right] \\ &-\mathrm{e}^{-\mathrm{t}}=\mathrm{x}+\mathrm{C} \\ &\frac{-1}{\mathrm{e}^{\mathrm{x}+\mathrm{y}}}=\mathrm{x}+\mathrm{C} \\ &(\mathrm{x}+\mathrm{C}) \mathrm{e}^{\mathrm{x}+\mathrm{y}}+1=0 \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads