Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 21 Differential Equation Excercise 21.10 Question 37 subquestion (viii)

Answers (1)

Answer:  \begin{aligned} & y \sin x=2 x^{2}-\frac{\pi^{2}}{2}\\ & \end{aligned}

Give:  \frac{d y}{d x}+y \cot x=4 x \operatorname{cosec} x, y\left(\frac{\pi}{2}\right)=0\\

Hint: Using   \int \cot x d x \text { and } \int x d x\\

Explanation:  \frac{d y}{d x}+y \cot x=4 x \operatorname{cosec} x

 \frac{d y}{d x}+(\cot x) y=4 x \operatorname{cosec} x

This is a linear differential equation of the form

 \begin{aligned} &\frac{d x}{d y}+P y=Q \\ &P=\cot x \text { and } Q=4 x \operatorname{cosec} x \end{aligned}

The integrating factor If  of this differential equation is

\begin{aligned} &I f=e^{\int P d x} \\ & \end{aligned}

=e^{\int \cot x d x} \\

x=e^{\log |\sin x|}                       \quad\left[\int \cot x d x=\log |\sin x|+C\right] \\

=\sin x                     \quad\left[e^{\log e^{x}}=x\right]

Hence, the solution is 

\begin{aligned} &y I f=\int \text { QIf } d x+C \\ &=y(\sin x)=\int(4 x \operatorname{cosec} x) \sin x d x+C \\ &=y \sin x=4 \int x \frac{1}{\sin x} \sin x d x+C \quad\left[\operatorname{cosec} x=\frac{1}{\sin x}\right] \end{aligned}
\begin{aligned} &=y \sin x=4 \int x d x+C \\ &=y \sin x=4\left(\frac{x^{2}}{2}\right)+C \\ &=y \sin x=2 x^{2}+C \ldots(i) \end{aligned}

Now    \begin{aligned} &y\left(\frac{\pi}{2}\right)=0 \text { when } x=\frac{\pi}{2}, y=0 \\ & \end{aligned}

\quad=0 \sin x=2\left(\frac{\pi}{2}\right)^{2}+C \\

=0=2 \frac{\pi^{2}}{4}+C \\

=C=-\frac{\pi^{2}}{2}

Substituting in (i)

=y \sin x=2 x^{2}-\frac{\pi^{2}}{2} 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads