Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D. Sharma Maths Class 12 Chapter 21 Differential Equations Exercise 21 .9 Question 20 Maths Textbook Solution.

Answers (1)

Answer: y=c e^{\tan ^{-1}\left(\frac{y}{x}\right)}

Given: y^{2}dx+\left ( x^{2}-xy+y^{2} \right )dy=0

Hint:Put y=vx and \frac{dy}{dx}=v+x\frac{dv}{dx}

Solution: we have

y^{2}dx+\left ( x^{2}-xy+y^{2} \right )dy=0

\Rightarrow \frac{dy}{dx}=\frac{-y^{2}}{x^{2}-xy+y^{2}}

It is homogeneous equation.

Putting y=vx and \frac{dy}{dx}=v+x\frac{dv}{dx}


\Rightarrow x \frac{d v}{d x}=\frac{-v^{2}}{1-v+v^{2}}-v

\begin{aligned} &\Rightarrow x \frac{d v}{d x}=\frac{-v^{2}-v+v^{2}-v^{3}}{1-v+v^{2}} \\ &\Rightarrow x \frac{d v}{d x}=\frac{-v-v^{3}}{1-v+v^{2}} \\ &\Rightarrow x \frac{d v}{d x}=\frac{-v\left(v^{2}+1\right)}{v^{2}-v+1} \end{aligned}

Separating the variables we have,

\frac{v^{2}-v+1}{-v\left(v^{2}+1\right)} d v=\frac{d x}{x} \\

\Rightarrow\left(-\frac{1}{1+v^{2}}-\frac{1}{v}\right) d v=\frac{d x}{x} \\

\Rightarrow-\int \frac{1}{v} d v+\int \frac{1}{1+v^{2}} d v=\int \frac{d x}{x} \\

\Rightarrow-\operatorname{logv}+\tan ^{-1} v=\log x=\log c \\

\Rightarrow-\log \left(\frac{y}{x}\right)+\tan ^{-1}\left(\frac{y}{x}\right)=\log x k \\                                                                    \left [ \therefore v=\frac{y}{x} \right ]

\Rightarrow \log \left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y}{x}\right)=\log x c \\

\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)=\log x k-\log \left(\frac{x}{y}\right) \\

\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)=\log \left(\frac{x k y}{x}\right) \\

\Rightarrow e^{\tan ^{-1}\left(\frac{y}{x}\right)}=k y \\

\Rightarrow \frac{1}{k} e^{\tan ^{-1}\left(\frac{y}{x}\right)}=k \\

\Rightarrow \mathrm{y}=c e^{\tan ^{-1}\left(\frac{y}{x}\right)} \quad \text { Where } c=\frac{1}{k}

This is required solution.

Posted by


View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support