Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 21 Differential Equation Exercise 21.10 Question 36 Subquestion (xii)  maths textbook solution.

Answers (1)

Answer : y=\frac{x^{2}}{4}+\frac{x^{2}}{16}+C

Give :  x \frac{d y}{d x}+2 y=x^{2} \log x

Hint : Using integration by parts and \int \frac{1}{x}dx

Explanation : x \frac{d y}{d x}+2 y=x^{2} \log x

Divide by x

       =\frac{d y}{d x}+\left(\frac{2}{x}\right) y=x \log x

This is a first order linear differential equation of the form

          \begin{aligned} &\frac{d y}{d x}+P x=Q \\ &P=\frac{2}{x} \text { and } Q=x \log x \end{aligned}

The integrating factor If  of this differential equation is

         \begin{aligned} &I f=e^{\int P d x} \\ &=e^{\int \frac{2}{x} d x} \\ &=e^{2 \int \frac{1}{x} d x}\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int \frac{1}{x} d x=\log |x|+C\right] \end{aligned}

         \begin{aligned} &=e^{2 \log |x|} \\ &=e^{\log \left|x^{2}\right|} \\ &=x^{2}\; \; \; \; \; \; \; \; \; \; \;\; \; \; \; \; \; \; \; \; \; \quad\left[e^{\log e^{x}}=x\right] \end{aligned}

Hence, the solution of different equation is

       \begin{aligned} &y I f=\int Q I f d x+C \\ &=y x^{2}=\int x \log x x^{2} d x+C \\ &=y x^{2}=\int x^{3} \log x d x+C \end{aligned}      .....(i)

We have \int x^{3} \log x d x=\log x \frac{x^{4}}{4}-\int \frac{1}{x} \frac{x^{4}}{4} d x+C

        \begin{aligned} &=\log x \frac{x^{4}}{4}-\frac{1}{4} \int x^{3} d x+C \\ &=\log x \frac{x^{4}}{4}-\frac{1}{4} \frac{x^{4}}{4}+C \\ &=\log x \frac{x^{4}}{4}-\frac{x^{4}}{16}+C \end{aligned}

From (i)

        =y x^{2}=\log x \frac{x^{4}}{4}-\frac{x^{4}}{16}+C

Divide by x^{2}

       \begin{aligned} &=y=\frac{1}{x^{2}} \log x \frac{x^{4}}{4}-\frac{1}{x^{2}} \frac{x^{4}}{16}+C \\ &=y=\frac{x^{2}}{4} \log x-\frac{x^{2}}{16}+C \end{aligned}

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads