Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 21 Differential Equation exercise 21.10 question 32

Answers (1)

Answer:  y=\sin x+\frac{2 \cos x}{x}-\frac{2 \sin x}{x}+\frac{c}{x^{2}}

Hint: To solve this equation we use  \frac{d y}{d x}+P y=Q  where P,Q+  are constants.

Give:  \begin{aligned} &x \frac{d y}{d x}+2 y=x \cos x \\ & \end{aligned}

Solution:   \frac{d y}{d x}+\frac{2 y}{x}=\frac{x \cos x}{x}

\begin{aligned} &=\frac{d y}{d x}+\frac{2}{x} y=\cos x \\ & \end{aligned}

=\frac{d y}{d x}+P y=Q \\

P=\frac{2}{x^{\prime}} Q=\cos x

If  of differential equation is

\begin{aligned} &I f=e^{\int P d x} \\ & \end{aligned}

=e^{\int \frac{2}{x} d x} \\

=e^{2 \log x} \\

=e^{\log x^{2}} \\

=x^{2} \\

y I f=\int \text { QIf } d x+C

\begin{aligned} &=y x^{2}=\int \cos x x^{2} d x+C \\ & \end{aligned}

=x^{2}(\sin x)-\int 2 \sin x d x+C \\

=x^{2}(\sin x)-2\left[x(\cos x)-\int 1(\cos x) d x+C\right] \\

=x^{2}(\sin x)-2 x(\cos x)+2 \int \cos x d x+C \\

=x^{2}(\sin x)-2 x(\cos x)-2 \sin x+C \\

=y x^{2}=x^{2}(\sin x)-2 x(\cos x)-2 \sin x+C

\begin{aligned} &=y=\frac{x^{2}(\sin x)}{x^{2}}-\frac{2 x(\cos x)}{x^{2}}-\frac{2 \sin x}{x^{2}}+\frac{C}{x^{2}} \\ & \end{aligned}

=y=(\sin x)-\frac{2(\cos x)}{x}-\frac{2 \sin x}{x^{2}}+\frac{C}{x^{2}}

 

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads