Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 21 Differential Equation exercise Fill in the blank question 20 maths

Answers (1)

Answer:

 xy=Ce^{-y}

Hint:

 First separate the variables and then use simple Integrating to solve the question.

Given:

 y\, dx+(x+xy)dy=0

Solution:

\begin{aligned} &\Rightarrow y\, dx=-x(1+y)dy \\ &\Rightarrow \frac{dx}{x}=-\left ( \frac{1+y}{y} \right )dy \\ &\Rightarrow \int \frac{1}{x}=-\int \left ( \frac{1}{y}+1 \right )dy \\ &\Rightarrow log\, x=-log\, y-y+log\, C \\ &\Rightarrow log\, x+log\, y-log\, C=-y \\ &\Rightarrow log\frac{xy}{c}=-y \\ &\Rightarrow \frac{xy}{c}=e^{-y} \\ &\Rightarrow xy=Ce^{-y} \end{aligned}

Hence, the answer is

xy=Ce^{-y}

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads