Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 21 Differential Equation exercise 21.10 question 37 subquestion (v)

Answers (1)

Answer:  x e^{\tan ^{-1} y}=\tan ^{-1} y

Give:  \begin{aligned} &\left(1+y^{2}\right) d x+\left(x-e^{\tan ^{-1} y}\right) d y=0 \\ & \end{aligned}

Hint: Using  \int \frac{1}{1+x^{2}} d x

Explanation:  \begin{aligned} &\left(1+y^{2}\right) d x+\left(x-e^{\tan ^{-1} y}\right) d y=0 \\ & \end{aligned}

=\left(x-e^{\tan ^{-1} y}\right) d y=-\left(1+y^{2}\right) d x \\ 

 

 =x-e^{\tan ^{-1} y}=-\left(1+y^{2}\right) \frac{d x}{d y} \\

=\frac{x-e^{\tan ^{-1} y}}{1+y^{2}}=-\frac{d x}{d y}

\begin{aligned} &=\frac{x}{1+y^{2}}-\frac{e^{\tan ^{-1} y}}{1+y^{2}}+\frac{d x}{d y}=0 \\ &\end{aligned}

=\frac{d x}{d y}+\left(\frac{1}{1+y^{2}}\right) x=\frac{e^{\tan ^{-1} y}}{1+y^{2}}

This is a linear differential equation of the form

\begin{aligned} &\frac{d x}{d y}+P x=Q \\ &P=\frac{1}{1+y^{2}} \text { and } Q=\frac{e^{\tan ^{1} y}}{1+y^{2}} \end{aligned}

The integrating factor If  of this differential equation is 

\begin{aligned} &\text { If }=e^{\int \operatorname{Pdx}} \\ &=e^{\int \frac{1}{1+y^{2}} d x} \\ &=e^{\tan ^{-1} y} \quad\left[\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+C\right] \end{aligned}

Hence, the solution is

\begin{aligned} &x I f=\int Q I f d y+C \\ &=x\left(e^{\tan ^{-1} y}\right)=\int \frac{e^{-\tan ^{-1} y}}{1+y^{2}} e^{\tan ^{-1} y} d y+C \\ &=x e^{\tan ^{-1} y}=\int \frac{1}{1+y^{2}} d y+C \end{aligned}          \quad\left[e^{-\tan ^{-1} y+\tan ^{-1} y}=e^{0}=1\right]

\\ =x e^{\tan ^{-1} y}=\tan ^{-1} y+C \ldots \text { (i) }

\quad\left[\int \frac{1}{1+y^{2}} d y=\tan ^{-1} y\right]

Now  \begin{aligned} &y(0)=0 \\ & \end{aligned}

\quad=0 e^{\tan ^{-1}(0)}=\tan ^{-1}(0)+C \\

\quad=C=0

Substituting in (i)

 \begin{aligned} &=x e^{\tan ^{-1} y}=\tan ^{-1} y+0 \\ &=x e^{\tan ^{-1} y}=\tan ^{-1} y \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads