Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 21 Differential Equations Exercise Revision Exercise Question 40 Maths Textbook Solution.

Answers (1)

Answer: y\, \cos ec\: x+\cot \: x=c

Hint: you must know the rules of solving differential equation and integrations.

Given: \frac{dy}{dx}-y\cot x=\cos ec\: x

Solution:\frac{dy}{dx}-y\cot x=\cos ec\: x

The above equation is in form of

\frac{dy}{dx}+p\: y=q

Where p = -cot x and q = cosec x

Integrating factor = e^{\int px}

Considering \int p\: d\: x

                \begin{aligned} \Rightarrow & \int p d x=-\int \cot x d x \\ &=-\log |\sin x| &\left[\because e^{\log x}=x\right] \\ & \therefore \mathrm{e}^{\int p d x}=e^{-\log |\sin x|}=e^{\log (\sin x)^{-1}} \\ &=\sin x^{-1}=\frac{1}{\sin x}=\operatorname{cosec} x \end{aligned}

\therefore \text { Integrating factor I.F }=\operatorname{cosec} \mathrm{x}

Now, General solution is,

\begin{aligned} &\mathrm{y}(\mathrm{I} . \mathrm{F})=\int \mathrm{q}(\mathrm{I} . \mathrm{F}) \mathrm{dx}+\mathrm{C} \\ &\mathrm{y} \operatorname{cosec} \mathrm{x}=\int \operatorname{cosec} \mathrm{x} \operatorname{cosec} \mathrm{x} \mathrm{dx}+\mathrm{c} \\ &\mathrm{y} \operatorname{cosec} \mathrm{x}=\int \operatorname{cosec} \mathrm{x}^{2} \mathrm{dx}+\mathrm{c} \\ &\mathrm{y} \operatorname{cosec} \mathrm{x}=-\cot \mathrm{x}+\mathrm{C} \\ &\Rightarrow \mathrm{y} \operatorname{cosec} x+\cot \mathrm{x}=\mathrm{c} \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads