Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 21 Differential Equation exercise Fill in the blank question 26

Answers (1)

Answer:

 Degree=4

Hint:

 Degree = Highest power of the highest order derivative.

Given:

 The degree of differential equation

y=x\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^{2}+\left ( \frac{\mathrm{d} x}{\mathrm{d} y} \right )^{2}

is _______

Solution:

y=x\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^{2}+\left ( \frac{\mathrm{d} x}{\mathrm{d} y} \right )^{2}

y=x\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^{2}+\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^{-2}

y=x\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^{2}+\frac{1}{\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^{2}}

y=\frac{x\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^{4}+1}{\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^{2}}

y\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^{2}=x\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^{4}+1

So, the degree of above differential equation is 4

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads