Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 21 Differential Equation exercise 21.10 question 22

Answers (1)

Answer:  2 x e^{\tan ^{-1} x}=e^{2 \tan ^{-1} y}+C

Hint: To solve this equation we use e\int f\left ( x \right )dx  formula.

Give:  \left(1+y^{2}\right)+\left(x-e^{2 \tan ^{-1} y}\right) \frac{d y}{d x}=0

Solution:  \begin{aligned} &x-e^{\tan ^{-1} y} \frac{d y}{d x}=-\left(1+y^{2}\right) \\ & \end{aligned}

=\left(e^{\tan ^{-1} y}-x\right) \frac{d y}{d x}=1+y^{2} \\

=\left(e^{\tan ^{-1} y}-x\right) d y=\left(1+y^{2}\right) d x

Put \tan^{-1}y= t

\begin{aligned} &=\frac{1}{1+y^{2}} d y=d t \\ & \end{aligned}

=\left(e^{t}-x\right) d t=d x \\

=\frac{d x}{d t}=e^{t}-x \\

=\frac{d x}{d t}+x=e^{t} \\

=\frac{d y}{d x}+P(x) y=Q x

\begin{aligned} &=\frac{d x}{d t}+P(t) t=Q(x) \\ & \end{aligned}

P(t)=1, Q t=e^{t} \\

I f=e^{\int P(t) d x} \\

=e^{\int 1 d t} \\

=e^{t} \\

=x e^{t}=\int e^{t} e^{t} d t+C \\

=x e^{\tan ^{-1} y}=\frac{e^{2 \tan ^{-1} y}}{2}+C \\

=2 x e^{\tan ^{-1} y}=e^{2 \tan ^{-1} y}+C

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads