Get Answers to all your Questions

header-bg qa

Provide Solution For R.D.Sharma Maths Class 12 Chapter 21 Differential Equations Exercise  Revision Exercise Question 20 Maths Textbook Solution.

Answers (1)

Answer:x=\tan ^{-1}\left ( y+1 \right )+c

Hint: Separate y & x and than integrate both sides

Given:\frac{dy}{dx}=y^{2}+2y+2

Solution:\frac{dy}{dx}=y^{2}+2y+2

\begin{aligned} &\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{y}^{2}+2 \mathrm{y}+1+1 \\ &\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=(\mathrm{y}+1)^{2}+(1)^{2} \\ &\Rightarrow \frac{1}{(\mathrm{y}+1)^{2}+(1)^{2}} \mathrm{dy}=\mathrm{dx} \end{aligned}

Integrating both sides, we get

\begin{aligned} &\Rightarrow \int \frac{1}{(\mathrm{y}+1)^{2}+(1)^{2}} \mathrm{dy}=\int \mathrm{dx} \ldots \int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\ &\Rightarrow \tan ^{-1}\left(\frac{y+1}{1}\right)+\mathrm{c}=\mathrm{x} \\ &\Rightarrow \mathrm{x}=\tan ^{-1}(y+1)+\mathrm{c} \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads