Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter Differential Equations exercise 21.7 question 37 sub question (ii)

Answers (1)

Answer: -\frac{\log y}{y}-\frac{1}{y}=-\left[-x^{2} \cos x+2 x \sin x+2 \cos x\right]+c

Hint: Separate the terms of x and y and then integrate them.

Given: \operatorname{cosec} x \log y \frac{d y}{d x}+x^{2} y^{2}=0

Solution: \operatorname{cosec} x \log y \frac{d y}{d x}+x^{2} y^{2}=0

        \operatorname{cosec} x \log y \frac{d y}{d x}=-x^{2} y^{2}

        \frac{\log y}{y^{2}} d y=-x^{2} \frac{1}{\operatorname{cosec} x} d x

          Integrating both sides

        \int \frac{\log y}{y^{2}} d y=\int-x^{2} \sin x d x

        \int \frac{\log y}{y^{2}} d y=-\left[-x^{2} \cos x+2 \int x \cos x d x\right]    { using integration by parts}

        \begin{aligned} &-\frac{\log y}{y}-\frac{1}{y}=-\left[-x^{2} \cos x+2 x \sin x-2 \int \sin x d x\right] \\\\ &-\frac{\log y}{y}-\frac{1}{y}=-\left[-x^{2} \cos x+2 x \sin x+2 \cos x\right]+c \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads