Get Answers to all your Questions

header-bg qa

Explain Solution R.D. Sharma Class 12 Chapter 21 Differential Equations Exercise 21.9 Question 37 Maths Textbook Solution.

Answers (1)

Answer:\begin{aligned} \sin \left(\frac{y}{x}\right)=\log |x|+\frac{1}{\sqrt{2}} \\ \end{aligned}

Given:\begin{aligned} &x\cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x \end{aligned}

To find: we have to find the solution of given differential equation.

Hint: we will put y=vx \: and \: \frac{dy}{dx}=v+x\frac{dv}{dx}

Solution: we have,

\begin{aligned} &x\cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x \end{aligned}      ....(i)

It is homogeneous equation.

put y=vx \: and \: \frac{dy}{dx}=v+x\frac{dv}{dx}

So,

\begin{aligned} &x \cos \left(\frac{v x}{x}\right)\left(v+x \frac{d v}{d x}\right)=v x \cos \left(\frac{v x}{x}\right)+x \\ &\Rightarrow x \cos (v)\left(v+x \frac{d v}{d x}\right)=x(v \cos v+1) \\ &\Rightarrow \cos v\left(v+x \frac{d v}{d x}\right)=v \cos v+1 \\ &\Rightarrow v \cos v+x \cos v \frac{d v}{d x}=v \cos v+1 \\ &\Rightarrow x \cos v \frac{d v}{d x}=1 \end{aligned}

Separating the variables and integrating both side we get

\begin{aligned} &\int \cos v d v=\int \frac{d x}{x} \\ &\Rightarrow \sin v=\log |x|+c \\ &\text { Putting } v=\frac{y}{x} \\ &\Rightarrow \sin \left(\frac{y}{x}\right)=\log |x|+c \end{aligned}            ...(ii)

It is given that y=\frac{\pi }{4} when x=1

Putting y=\frac{\pi }{4}x=1 in equation (ii) we get

\Rightarrow \sin \left ( \frac{\pi }{4} \right )=c

\Rightarrow c=\frac{1}{\sqrt{2}}

Putting value of c in equation (ii) we get

\Rightarrow \sin \left ( \frac{y}{x} \right )=log\mid x\mid +\frac{1}{\sqrt{2}}

This is required solution.

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads