Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Differential Equation exercise 21.2 question 13 maths

Answers (1)

Answer:

 \frac{\mathrm{d} y}{\mathrm{d} x}+2xy=4x^{3}

Hint:

 \begin{aligned} &y=2(x^{2}-1)+ce^{-x^{2}} \\ &y=2x^{2}-2+ce^{-x^{2}} \\ &2x^{2}-y=2-ce^{-x^{2}} \\ &\text { Substitutes } 2-ce^{-x^{2}} \text { by } 2x^{2}-y \end{aligned}

Given:

 \begin{aligned} &\frac{\mathrm{d} y}{\mathrm{d} x}=4x+ce^{-x^{2}}(-2x) \\ &\frac{\mathrm{d} y}{\mathrm{d} x}=2x(2-ce^{-x^{2}}) \\ &\frac{\mathrm{d} y}{\mathrm{d} x}=2x(2x^{2}-y) \\ &\frac{\mathrm{d} y}{\mathrm{d} x}=4x^{3}-2xy \\ &\frac{\mathrm{d} y}{\mathrm{d} x}+2xy=4x^{3} \end{aligned}

Hence proved.

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads