Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Differential Equation exercise 21.2 question 15.3 subquestion (iii) maths

Answers (1)

Answer:

 4xy\frac{\mathrm{d} y}{\mathrm{d} x}+x^{2}-2y^{2}=0

Hint:

 Using the formula (a+b)2 and differentiating the given equation

Given:

 (x-a)^{2}+2y^{2}=a^{2}

Solution:

\begin{aligned} &2(x-a)+2y.2\frac{\mathrm{d} y}{\mathrm{d} x}=0\\ &(x-a)=-2y\frac{\mathrm{d} y}{\mathrm{d} x}\\ &a=x+2y\frac{\mathrm{d} y}{\mathrm{d} x}\\ &\left ( 2+\frac{\mathrm{d} y}{\mathrm{d} x} \right )^{2}+2y^{2}=x^{2}+\left ( 2+\frac{\mathrm{d} y}{\mathrm{d} x} \right )^{2}+2x.2y\frac{\mathrm{d} y}{\mathrm{d} x} \end{aligned}

4xy\frac{\mathrm{d} y}{\mathrm{d} x}+x^{2}-2y^{2}=0

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads